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Axisymmetric meniscus formation : a viscous-fluid 
model for cones 

By P. T. SQUIRE 
School of Physics, University of Bath, England 

(Received 6 April 1982) 

The dynamics of the formation of the axisymmetric meniscus around a cone 
contacting a free liquid surface are discussed. An approximate phenomenological 
model is set up. In  the case considered, where Re 6 1 and viscosity dominates the 
retarding forces, this leads to a differential equation relating the height of the circle 
of contact to time. Solutions are derived, involving one or more unknown parameters, 
which describe the time dependence of the height of the circle of contact. 

Experimental data, obtained from delayed flash photographs of the meniscus 
profiles of silicone fluid climbing over the surface of glass cones, provide general 
support for the model. The agreement between the predicted and observed height 
as a function of time is sufficiently close to justify the model as a useful description. 

1. Introduction 
When a solid body makes contact with a liquid that wets it, a meniscus is formed. 

The shape of this meniscus when fully formed depends on the surface tension and 
density of the liquid, the shape of the solid and the contact angle between liquid and 
solid. Except in very special cases even the final shape of the meniscus cannot be 
expressed analytically. However, extensive numerical calculations of this final static 
profile have been made since the pioneering paper of Bashforth and Adams (1883). 
A recent review has been given by Padday (1976). Comprehensive tables of static 
profiles have been published by Hartland & Hartley (1976). 

Less has been published about the growth of such a meniscus from the moment 
of first contact between solid and liquid, though studies have been made of the rise 
of the constrained meniscus in capillary tubes (e.g. Kissling & Gross 1970; Huh & 
Mason 1977). 

In  this paper the dynamics of meniscus formation for a cone making contact with 
the free surface of a viscous liquid are considered. More specifically the paper treats 
the problem illustrated in figure 1 ,  which shows a cone with its axis vertical making 
contact with a horizontal liquid surface. Figure l ( a )  shows the situation at the 
moment of contact. Figures l ( b 4 )  show the evolution of the fully formed static 
meniscus. In  this paper the balance of forces associated with the motion is used to 
derive a simple physical model as a basis for the presentation of experimental results. 
I n  particular, an equation is derived for the time dependence of the height of the circle 
of contact between the meniscus and the cone, for the case when the inertial terms 
in the force-balance equation are negligible. 

The experimental part of the paper describes how the height of the meniscus and 
other aspects of its shape have been observed. Detailed results are presented of height 
as a function of time for various values of cone angle and liquid viscosity. 

The objective of the work is to establish an approximate theoretical model for the 
phenomenon, and to evaluate it against detailed experimental data. 
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FIGURE 1. Evolution of static meniscus from moment of contact. 

z = 0 (free surface) 
0 ?"Po Q S 

FIGURE 2 .  Section through cone and meniscus, defining 
coordinates of model. See text for details. 

2. Formulation of a semi-empirical model 
2.1. Basic assumptions 

Figure 2 shows an axial section through the cone and the meniscus. All pressures are 
measured relative to  that of the atmosphere. 

A rigorous treatment of the problem starting with the Navier-Stokes equations 
is beset by a number of severe difficulties, notably the following. 

(a)  The behaviour of an advancing contact line between liquid and solid is not well 
understood. I n  particular the variation of contact angle with time cannot be 
calculated. 

( b )  The upper, curved surface of the meniscus forms a moving boundary whose 
shape as a function of time is both a condition and the goal of the solution. 

( c )  The fluid motion in the liquid below the free surface depends on the size and 
shape of the boundaries of the container. Ideally the experiments would be carried 
out in a infinite reservoir of liquid; in practice finite containers must be used. 

( d )  Viscous drag of partially immersed bodies is not well understood. 
( e )  For the general case inertial terms in the Navier-Stokes equation lead to  

mathematical difficulties. 
I n  the approximate model developed here a number of simplifying assumptions 

will be made which enable some of these difficulties to  be circumvented. The objective 
is to provide a framework for the presentation and discussion of the detailed 
experimental results in $4. The initial assumptions are as follows. 

(i) Details of the motion of the liquid below the free surface may be neglected so 
far as its effect on the meniscus is concerned. 

(ii) Viscous drag may be described by a single dimensionless parameter in a manner 
analogous to drag a t  uniform velocity in a homogeneous fluid. This is supported by 
a recent study of impact drag (Moghisi & Squire 1981). 

(iii) The liquid viscosity is sufficiently high to justify neglect of the time-derivative 
terms in the equation of motion. This is the fundamental assumption of all creeping 
motion calculations. 
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2.2. Force balance 
For the case of low-Reynolds-number flow the balance of forces acting on the liquid 
volume V bounded by the cone, the meniscus and the free surface z = 0 (figure 2) - 

may be expressed as 
F,+Fp+Fg+F, = 0, (1) 

where the terms denote vertical force components corresponding to  the following 
physical effects : 
F, - surface tension along the circle of contact ; 
Fp - hydrostatic pressure acting on submerged surface of the cone ; 
Fg - gravity ; 
F,, - viscous drag. 

Explicit expressions will now be derived for each of these in terms of the height h 
of the circle of contact. 

Surface-tension force F,, This is the cause ofthe upward motion, and may be written 
exactly if the contact angle a is known. The vertical component of the surface tension 
force along the line of contact (figure 2) is given by 

F, = 2na tan 6 cos (6-a) h, (2) 

where u is the surface tension and 6 is the semivertical angle of the cone. 
There is a major difficulty in evaluating (2) because a is the dynamic contact angle. 

Although many studies have been made of the contact angle for moving contact lines 
(Dussan V. 1979), it  is still not possible to  specify a with any confidence for such 
problems. Nor is it straightforward to derive it from photographs. The main difficulty 
arises in deciding a t  which point to measure a,  since when the contact line is moving 
there is a pronounced distortion of the interface within a very small distance from 
the contact line. It is quite possible, for example, that a is zero a t  the contact line, 
but signifiantly different from zero at a distance too small to  be seen on the 
photographs. I n  other words, the apparent contact angle may differ appreciably from 
the actual contact angle (Hansen & Toong 1971). 

For this reason a will be retained in (2) as an unknown parameter. It can then be 
incorporated either on the basis of improved theoretical understanding or of 
experimental information. 

Pressure term Fp. The curvature of the meniscus causes a reduction in pressure 
above the free surface. I n  the static case this is just balanced by the hydrostatic 
pressure -pgz. It is assumed that the pressure has the hydrostatic value, so that the 
upward force on the 

Cravitationul force 

liquid is 

Fp = pg I” 2n tan2 6 z2 dz 
0 

= fnpg tan2 6 h3. (3) 

l$ = -pgV. (4) 

Fg. The downward gravitational force is given by 

The problem is to  relate the meniscus volume V to the height h. Since even the 
static profile cannot be expressed analytically it is unrealistic to seek an  exact 
expression for V(h).  I n  seeking an approximate expression for V(h)  either an 
assumption about the meniscus shape must be made or empirical evidence is needed. 
Two alternative assumptions will be considered here. I n  $4 experimental observations 
of V(h)  will be presented. 

4-2 
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The simplest assumption that can be made concerning V is that the meniscus shape 
is constant throughout its formation. It then follows dimensionally that 

V = kh3, (5) 

where k is a dimensionless constant which must be chosen to satisfy the final static 
meniscus height and volume; that is 

V, = kh: 

V, and h,  can be found from numerical integration of the Young-Laplace equation. 
The details of this are given in the appendix. k is thereby determined for a particular 
cone angle. 

In  the absence of a rigorous treatment of the dynamic meniscus profile, the next 
simplest assumption that can realistically be made is that the static shape is found 
everywhere except very close to the contact line. A short-range adjustment in the 
surface can then allow the actual contact angle to be zero, as explained above in the 
discussion of F,. It is then possible to calculate the meniscus volume V ( h )  from the 
static profiles. The details of the calculation are also given in the appendix. Typical 
results are shown in figure 14. 

For the purposes of setting up the governing equation for the meniscus height, i t  
will be convenient to leave the volume specified as V ( h ) .  The equations may then be 
integrated using either the values calculated from the static profiles or the measured 
values. 

Viscous drag F,. Exact expressions for the drag force on partially immersed bodies 
are not available. The drag force on a sphere during impact with an inviscid liquid 
has been extensively studied both theoretically (e.g. Miloh 1981) and experimentally 
(e.g. May & Woodhall 1948). The impact of a cone has also been studied, though less 
extensively (Shiffman & Spencer 1951 ; Watanabe 1930). These studies all relate to  
the case of a moving solid and an inviscid liquid. The case of impact on a viscous 
liquid has recently been studied by Moghisi & Squire (1981), who showed that for 
a sphere the impact drag force may be represented by an expression of the form 

where A is the cross-sectional area and v is the impact velocity. The impact drag 
coefficient CD may be expressed in the form 

a c -  D - R e  (Re  < I) ,  (7)  

where a depends on the depth of immersion. 
Equations (6) and (7)  will be recognized as the familiar expressions for the drag 

force on a body moving at constant velocity in a homogeneous fluid a t  low Reynolds 
number: so-called Stokes drag. The only difference is the value of the constant of 
proportionality a between the drag coefficient and inverse Reynolds number (7 ) .  For 
the homogeneous case a = 24, while for the impact case a is a function of the depth 
of immersion, involving only one or two parameters during the early stages of impact. 

This result suggests that i t  may be possible to  describe the viscous drag force for 
the present problem by a single parameter. The cases of moving solid and moving 
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liquid are not generally equivalent, but in the special case of creeping motion (Re $ 1) 
they are. Thus the meniscus drag force will be written by analogy with (6) as 

(8) 

(9) 

F, = -1C 2 DPAV2> 

A = n(h  tan ~ 9 ) ~ ,  

dh 
v=z. 

Also, by analogy with ( 7 )  the drag coefficient will be written as 

b 
Re 

C,=-. 

The Reynolds number will be taken as 

2nh tan 8 v 
Re = 

V 

Equations (8)-(12) combine to give 

dh 
dt 

F, = - (ibpv tan 8 )  h-. (13) 

It should be noted that b cannot be calculated theoretically a t  present, and so must 
be regarded as an adjustable parameter to be determined by experiment. 

2.3. The governing equation for h(t) 

The force-balance equation may now be written by combining (1)-(4) and (13). After 
division by ibvph tan 8 the result is 

8 n ~  cos (0 - a) 
-#nh2tan8 = 1 bvp 

Equation (14) is the governing equation for meniscus height as a function of time. 
I n  order to integrate it V ( h )  and a must be specified, as discussed in 52.2. The detailed 
results of integration will be given in $5.3 .  However, it  is useful to  note that the 
simplest form of V ( h ) ,  given by (5), enables (14) to be integrated exactly in the 
convenient form t 

h = h,  tanh-, (151 
7 

where 

bv 
7 =  

4gh (n cos 8 (k cot 8 - tan @}! ' 

I n  (16) and (17) h is the capillary constant: 

2.4. Dimensionless groups 

There are two distinct dimensionless groups that apply to the meniscus rise. During 
the early part of the rise the gravitational force Fg and pressure force Fp are small 
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compared with the surface-tension force Fv and viscous drag force F,. In  (14) this 
corresponds to neglect of the terms in curly brackets on the left-hand side. The motion 
is then at constant speed, 

The dimensionless group that  determines whether (19) applies is the Reynolds number 

lv 
Re = -, 

U 

where I is a characteristic length and v is the velocity. For the present problem v may 
be taken as dhldt.  The characteristic length is not constant as the meniscus rises. If 
it  is taken to be the diameter of the circle of contact then 1 = 2h tan 0 and 

Re = ( - > h g ) .  2 t an0  

The transition from inertia-dominated to viscous flow will occur when Re z 1. 
Equation (19) is expected to apply when Re < 1. 

When the gravitational term becomes significant there is a dimensionless group, 
the Suratman number (Catchpole & Fulford 1966), which applies ; if the characteristic 
length is taken to be the capillary constant A,  then 

xu = ($)+. 
Physically Xu is the ratio of (inertia force x surface-tension force) to the square of the 
viscous force. 

It follows that in performing experiments to measure h( t )  similarity between curves 
may exist in one region but not necessarily in the other. The measurements reported 
in $4 are mostly in the high-viscosity range for which Re -4 1 and Xu 5 1.  

3. Apparatus for the observation of meniscus formation 
The obvious method of observing the formation of a meniscus is by means of 

high-speed cinephotography . However, there are several reasons why this method has 
not been used for the observations reported here. First, the resolution of high-speed 
cine film is poor. Secondly, the meniscus rise is highly nonlinear against time. Thus 
a rapid frame rate is required early in the process and a much slower rate later on; 
such variable frame rates are not practicable with standard high-speed cameras. 
Thirdly, i t  is difficult to couple a high-speed camera to a microscope to obtain the 
magnification necessary. Fourthly, it  is difficult to synchronize the start of the event 
with a high-speed camera running for perhaps only a second. Finally, the cost of the 
large number of films required would be prohibitive. 

For these reasons a delayed-flash system has been devised for obtaining single 
exposures on 35 mm film at accurately known times after the moment of contact. 
The system is shown schematically in figures 3 and 4. 

Briefly, the system operates as follows: light from a He-Ne laser is directed within 
the liquid to undergo total internal refection a t  the point of contact between the cone 
and the liquid (figure 3). Before the cone touches the surface the light falls 
symmetrically on a two-element photodiode (Centronic LD2-5T) connected in series 
opposition so that the output is initially zero. As soon as contact is made by the cone 
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Cone 

I \ .. . - -. -. - 
- . - . . - Photodiode 

- . . - - Laser 

- - Liquid - 
- Prism 

- - . - . . - 

FIGURE 3. Optical triggering system for delayed flash photography. 

Delayed- 

Timer pulse 

FIGURE 4. Schematic diagram of apparatus for delayed-flash photography. C, cone; D1, D2, 
photodetectors; F, filter to absorb laser light; L, condensing lens; M, microscope; P, prism ; T, tank 
containing liquid. 

the reflected beam is displaced, and an output appears across the photodiode. This 
is amplified and filtered before triggering a delayed-pulse generator and starting a 
timer (figure 4). After a variable delay the pulse generator triggers the stroboscope, 
which emits a single flash. This flash stops the timer and the light is partially focused 
by the condenser lens on to the liquid meniscus. The camera and microscope are 
arranged directly along the axis of the stroboscope, so that the meniscus is seen in 
silhouette. By this means adequate exposure can be obtained with short (about 20 ,us) 
flashes and 400 ASA film. 

An optical system of triggering has been chosen because the liquids used in this 
study were silicone fluids (Dow Corning 200). Being non-conducting these rule out 
the more straightforward electrical triggering which may be used with conducting 
liquids. 

The cones were of glass, ground and polished to an optical finish by carborundum, 
diamond and alumina. They were mounted on a micromanipulator so that they could 
be lowered slowly to touch the liquid surface. Cone entry was thus effectively a t  zero 
velocity ( < 0.1 mm s-l). Between each entry the cone was very slowly raised to  drain 
as much liquid as possible from it  whilst leaving the surface wet. 
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4. Results 
Some examples of meniscus photographs are shown in figure 5. These indicate the 

quality of the raw data from which meniscus height and shape must be derived. The 
main difficulties are in distinguishing between the liquid and the cone surface a t  the 
line of contact, and in locating the position of the free surface. 

The results are primarily in the form of graphs of meniscus height h( t )  as a function 
of time. These are given first for fixed cone angle (8 = 45') with variable viscosity 
(figure 6). Log/log scales have been used for these graphs to permit a wide range of 
times and viscosities to  be shown together. Each point on these graphs corresponds 
to a separate meniscus formation, and the scatter on the graphs partly results from 
small variations in the position of the cone tip relative to the free surface. The 
remaining scatter is due to  variations in the amount of liquid adhering to the cone 
after withdrawal and to the uncertainties in measuring the meniscus height from the 
photographs. 

Note the single set of data in figure 6 obtained with water using cinkphotography. 
These data are not strictly part of the present study, but are useful in determining 
what constitutes the high-viscosity region. (See 55.) 

The second sequence of results is shown in figure 7. These are graphs of h(t)  a t  fixed 
viscosity (v = lo3 mm2 5-l)  for varying cone angle. Linear scales have been used for 
these graphs. 

Finally, information on the shape is given in figure 8. This is a graph of meniscus 
volume V against height. V ( h )  is the shape function that appears in (14). The 
estimation of V from the photographs is even more difficult than that of h, since the 
meniscus extends to a distance from the axis several times the height, approaching 
the surface asymptotically. The very small volume during the early part of the rise, 
and its variation by more than four orders of magnitude over the measured range 
should be taken into account when assessing these results. The difficulties involved 
in deriving accurate data precluded a systematic study of how V ( h )  depends on 
viscosity and cone angle. It is gratifying to observe, however, that  the single point 
corresponding to the static meniscus, which can be calculated from numerically 
integrated profiles, agrees closely with the measured volumes. Details of the calcula- 
tions are given in the appendix. 

5. Analysis and discussion of results 
The results have been analysed in three stages: ( a )  the initial rise (h/h,  5 0.5) 

during which the viscous retarding force dominates; ( h )  the later stage (h/h,  0.5) 
during which the gravitational force and viscous force are both significant; and ( c )  
the entire range, to test the model equation (14). 

5.1. initial rise (h  < 0*5h,) 

I n  52.4 i t  was explained that during the early stages of the meniscus formation, in 
the viscous limit, the contact line should rise a t  a constant speed given by (19) ; i.e. 

87m COB 8 
vo = 

b V P  

Inspection of figure 6 confirms this prediction. Curves 2-6 possess a linear portion 
having a slope of unity on the log/log scales employed. For curves 4-6, corresponding 
to the higher viscosity values, this linearity occurs until the height is almost half the 
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lo2 I 

0.01 0.1 I 10 

h (mm) 
FIGURE 8. Meniscus volume Vas a function of height h. 0 = 4.5'; v = lo3 mm2 s-l. +, experimental 

, Vcc h3; -, 
V = 41h3/(1 +40h). (Dimensions in mm.) 
values; 0, calculated value for static meniscus. . . . . ., V K h 2 ;  _ _ _ _  

final height, indicating the insignificance of the gravitational term in the governing 
equation (14). Curves 2 and 3 correspond to lower viscosity values (20 and 
100 mm2 s-l respectively). The effect of inertial terms is apparent here. From (12) Re 
may be estimated a t  the upper limit of the linear portion of h(t)  in figure 6. The values 
are about 0.20 for curve 2, and about 0.26 for curve 3. By contrast, for curve 6, 
Re z 5 x when h = 1 mm. The transition from the viscous limit to the inertial 
limit thus occurs for viscosity values < 100 mm2 s-l. For water ( u  = 1 mm2 s-l) the 
viscous forces are entirely negligible except a t  the very early stages of meniscus 
formation. The inertial terms dominate the process until h 2 0*5h,. For 
0*lh,  < h < 0.8h, the dependence of h on t is closely described by 

h cc tf. 

Curve 2 shows a transitional case, in which h K t initially, changing to  h a ti at 

I n  the viscous limit the initial speed depends on the single unknown parameter b ,  
which is the constant in the equation for the drag coefficient (1 1). The value of b can 

h z Olh , .  
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FIQURE 9. Product of initial speed and viscosity plotted against viscosity for 0 = 4 5 O ,  derived from 
figure 6. The vertical bars are 95% confidence limits. ----, the weighted mean of the t'wo final 
values. 

be derived from the experimental results for h(t). I n  the viscous limit (19) predicts 
that  

which is a constant for a given liquid and cone. In  order to test this prediction v,, v 
has been plotted against v for the data in figure 6. wo was calculated by linear 
regression of h against t over the linear portions of curves 2-6. The results are shown 
in figure 9. They confirm that the viscous limit is effectively attained a t  viscosity 
values between 200 and 500 mm2 s-l. 

From (22) and figure 9 the value of b may be deduced for a 45' cone as 

b = 131f7. 

Data for cones having semi-angles between 20" and 60° are shown in figure 7. It has 
not been possible to repeat measurements for all cone angles a t  different viscosities, 
but the results for 0 = 45' discussed above suggest that  for v = lo3 mm2 s-l it is valid 
to assume that the viscosity is dominant, and that (19) may be applied. On this 
assumption b has been calculated from h(t) for various values of 0. The results are 
given in figure 10, which shows the remarkable result that  b tan 0 is virtually constant 
over the range 0 = 30'-60°, having the value 

6 t a n 0  = 137f8  

with 95% confidence. The value for 0 = 20' appears to be significantly higher, but 
whether this represents a significant trend is uncertain. Unfortunately i t  is very 
difficult to obtain good data for cone angles less than 30°, owing to  the extremely 
small size of the meniscus (see figure 7 ) .  
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5.2.  Analysis of data for h 2 0*5h, 

The Behaviour of h(t) when the gravitational term becomes significant is more 
complicated than the initial behaviour discussed above. As explained in $2.4, the 
relevant dimensionless group for the viscous limit is the Suratman number 
Su = (a3/gv4p3)i .  Since (r and p are constant for the liquids used, i t  is helpful to see 
how h(t) scales with v. Figure 1 1  shows h plotted against t / v  for h 2 0-5h,. It 1s clear 
from this that similarity exists if t scales as v ;  in other words, Suj is the appropriate 
dimensionless group. The critical value of Su for viscous behaviour is about 1 ,  
corresponding to Y z 200 mm2 s-l. 

5.3.  Attempt to$t the model equation to h(t)  

The model proposed in $2 leads to the governing equation (14) for h(t). In  the absence 
of experimental data this equation contains the unknown drag parameter b and the 
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t l v  

FIGURE 12. Attempts to fit the governing equation (14) to the data. The crosses denote averaged 
data for several values of viscosity, normalized by plotting h/h,  against t/v. Curve A is 
h/h,  = t a n h k t .  Curve B is obtained by taking V(h)  from figure 14, based on static profiles; a = 0. 
Curve C is numerically integrated from (14), with a = 0, b = 131 and V = 41h3/(1 +4.0h).  

unknown functions V(h) ,  a(h). The simplest hypotheses suggested in 52.2 are that 
B = kh3 and a = 0 (perfect wetting). These lead to the exact solution (15) 

t 
h = h,  tanh-, 

where h, and 7 are given by (16) and (17). Since k is known from the static profiles 
(see appendix) there is only one adjustable parameter b .  This may be deduced from 
the initial rate of rise, as described in $5.1. The solution (15) for h(t) is thus completely 
determined. It is shown by curve A in figure 12. 

The second hypothesis concerning V(h)  suggested in $2.2 is that the dynamic 
profiles differ from the static profiles only very near the contact line. V ( h )  can then 
be calculated from the numerically integrated Young-Laplace equation. Figure 14 
in the appendix shows the results for 6 = 45O. The result of using the V(h)  calculated 
in this way is shown in curve B of figure 12. It is clear that  the static profiles greatly 
exaggerate the volume during the early stages of the process. This may be confirmed 
by comparing the computed profiles shown in figure 13 with the photographs in 
figure 5. These show that the dynamic profiles fall off much more rapidly with radius 
than the static ones. It appears that  the surface disturbance propagates radially a t  
a speed significantly lower than the vertical speed (dh ld t ) .  

The third method of incorporating V(h)  into (14) is to  use the experimental values 
shown in figure 8. This shows that V is indeed proportional to h3 at low values of 
h, but that, as h -+ h,, I' cc h2. Since i t  is a t  the higher values of h that V becomes 
significant i t  is likely that an improved fit will be obtained by incorporating the 
experimental values of V(h)  into(l4). This can either be done directly or, more 
conveniently, by choosing an approximating function for V ( h ) .  A simple function 

K h3 
which fits the data quite well is 

J 7 ' = 1  
l + K 2 h .  

7 
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It should be noted that K,  and K ,  are not independent, for when h = h, V = V, ; 
i.e. 

= k ,  Kl 
1+K,h, 

where k is known from the static profiles. Thus 

and, for 6 = 45', h,  = 2-13 mm and k = 4.33 (see appendix). Therefore 
K ,  = 011K1-0.47 (6 = 45O) when the dimensions are in mm. The best fit to the 
experimental data in figure 8 consistent with this requirement is given by 

Kl = 41, K,  = 4.0. 

The 95% confidence limits on Kl are a t  54 and 33. 
Equation (14) may now be integrated numerically if the contact angle a is taken 

to be zero, as might be expected for pre-wetted cones. The result of this integration 
is shown by curve C in figure 12. 

It is apparent from figure 12 that the inclusion of experimental values of V(h) does 
not give a particularly good fit to the experimental h(t) data. The gravitational term 
is plainly large enough to  reduce the rate of rise appreciably a t  less than half the final 
height, whereas the actual rate is almost constant up to this stage. 

Any further improvements to the fit between (14) and the experimental data must 
await more detailed information about the behaviour in the immediate vicinity of 
the contact line. This might enable a to be included in a more satisfactory manner 
than the present assumption that a = 0 throughout the process. I n  the meantime the 
model provides auseful first approximate description of the process which satisfactorily 
accounts for several important features. 

6. Conclusions 
A simple model has been formulated to describe the evolution of a liquid meniscus 

on a cone in the viscous limit (Re < 1 ,  Su 5 1) .  The model describes the drag force 
by a single adjustable parameter applicable to cones of any semi-angle between 30' 
and 60°, and to liquids of viscosity 2 200 mm2 s-l. The meniscus shape is incorporated 
either by ad hoc methods or by using experimental data. 

Detailed experimental results have been presented for the variation of meniscus 
height with time for prewetted cones having semi-angles between 20' and 60' and 
for liquid viscosities in the range 1-103 mm2 s-l. The main features of the results are 
satisfactorily accounted for by the model. However, a close fit to  the experimental 
results requires knowledge of the effective contact-angle variation during the 
evolution of the meniscus. 

My grateful thanks are due to John Acton for many helpful discussions. Miklos 
Tatar meticulously developed all the films. Finally, I am most grateful to the School 
of Physics, University of Bath, for affording the facilities for this work. 
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FIGURE 13. Static meniscus profiles obtained numerically. The scale are normalized to the capillary 
constant. z1 are the coordinates of the circle of contact through the point P on a cone having 
semi-angle 0 = 45'. 

Appendix 
Static meniscus proJiles 

The shape of s_tatic axisymmetric meniscus profiles may be found by numerical 
integration of the Y oung-Laplace equation 

where R, and R, are the principal radii of curvature. The method adopted here is 
based on that of Freud & Freud (1930) (see also Huh & Scriven 1969). The integration, 
performed here by a Runge-Kutta technique, produces a family of profiles, each 
starting a t  the free surface and terminating at a point on the contacting cone, such 
that (for zero contact angle) d z / d x  = z / x  (see figure 13). Similar results have been 
published by Hartland & Hartley (1976). 

From such a family of profiles a graph may be drawn of the height of the circle 
of contact as a function of cone angle. From this graph it may be found that, for 

h ,  = 1.01A, e = 450, 

where A is the capillary constant (2nlpg)t. For p = 971 kg m-3 and g = 21.2 mN m-l 
this gives h,  = 2.13 mm. 

Volume of the static meniscus 

The volume contained between the free surface, the cone and the static meniscus 
surface is given by (Freud & Freud 1930) 

I' = (nr; z1 + nu1 rl - $77 tan2 0 r ; )  A3, 

where r l ,  z1 are coordinates of the contact line, and u1 = sin {tan-l ( d z l d r ) }  a t  the 
contact line. 
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FIGURE 14. Meniscus volume as a function of height calculated from the static profiles. 

0 = 45", h = 2.1 1 mm. (Compare figure 8.)  

The values of r l ,  z1 and u1 can be found for any cone angle 6 and height h from 
the computed profiles. Hence V(h) can be found. The results for 6 = 45O, h = 2.1 1 mm, 
are shown in figure 14. For the range of h over which V(h) is significant in (14), it  
may be adequately represented by 

V = 1 4 . 4 I ~ l ' ~ ~ .  

This should be contrasted with the empirical data shown in figure 8 and discussed 
in $5.3. The two estimates of V agree a t  the final height h, = 2.13 mm. It follows 
that the constant k in (5) must be such that (in units of mm) 

V, = kh: = 14.4h1'44 o o >  

... k = 4.33. 

Volume of the dynamic meniscus 
The volume of the meniscus as a function of height is shown in figure 8. The method 
of calculation of the volume V from the profiles is based on Pappus's theorem. The 
geometry is shown in figure 15. 

We have V = 2nAr,, 

where A is the area of the plane axial section OPS, shaded in figure 15, and rc is the 
radial coordinate of the centroid of A .  It is easily shown that 

v = 2n j r zd r ,  

where the line integral is taken around OPS. This integral may be conveniently 
evaluated using a digitizing table interfaced to a computer. 
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FIGURE 15. Diagram of the meniscus, defining the geometry for evaluating the meniscus 
volume V .  C is the centroid of area of the section OPS, and rc the radial coordinate of C. 
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